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Abstract

The Huang—Hilbert transformation (HHT, composed of empirical mode decomposition and Hilbert transformation) can be applied to
calculate the spectrum of nonlinear and nonstationary signals. The superior temporal and frequency resolutions of the HHT spectrum are
illustrated by several examples in this article. The HHT analysis interprets wave nonlinearity in terms of frequency modulation instead of
harmonic generation. The resulting spectrum contains much higher spectral energy at low frequency and sharper drop off at high frequency in
comparison with the spectra derived from Fourier-based analysis methods (e.g. FFT and wavelet techniques). For wind generated waves, the
spectral level of the Fourier spectrum is about two orders of magnitude smaller than that of the HHT spectrum at the first subharmonic of the
peak frequency. The resulting average frequency as defined by the normalized first momentum of the spectrum is about 1.2 times higher in

the Fourier-based spectra than that of the HHT spectrum.
Published by Elsevier Ltd.
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1. Introduction

Fourier-based spectral analysis methods have been
widely used for studying random waves. One major
weakness of the Fourier-based spectral analysis methods
is the assumption of linear superposition of wave com-
ponents. As a result, the energy of a nonlinear wave is
spread into many harmonics, which are phase-coupled via
the nonlinear dynamics inherent in ocean waves. In addition
to the nonlinearity issue, strictly speaking Fourier spectral
analysis should be used for periodic and stationary
processes only. Wave propagation in the ocean is certainly
neither stationary nor periodic.

Recently, Norden Huang and his colleagues developed a
new analysis technique, the Huang—Hilbert Transformation
(HHT). Through analytical examples, they demonstrated the
superior frequency and temporal resolutions of HHT for
analyzing nonstationary and nonlinear signals [1,2]. The
confidence band of the resulting HHT spectrum is discussed
in great detail by Huang et al. [3]. A brief description of the
HHT analysis technique is presented in Section 2. Using the
HHT analysis, the physical interpretation of nonlinearity is
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frequency modulation, which is fundamentally different
from the commonly accepted concept associating non-
linearity with harmonic generation. Huang et al. argued that
harmonic generation is caused by the perturbation method
used in solving the nonlinear equation governing the
physical processes, thus the harmonics are produced by
the mathematical tools used for the solution rather than a
true physical phenomenon.

In Section 3, we examine the spectrum of wind generated
waves derived from HHT analysis and compare the results
with those obtained by Fourier-based techniques (wavelet
and FFT algorithms). The wavelet technique is based on
Fourier spectral analysis but with adjustable frequency-
dependent window functions, generally called mother
wavelets, to provide temporal/spatial resolution for nonsta-
tionary signals. As expected, the Fourier-based analysis
interprets wave nonlinearity in terms of harmonic gener-
ation, thus the spectral energy leaks to higher frequency
components. The HHT interprets wave nonlinearity as
frequency modulation and the spectral energy remains near
the base frequencies. As a result, the HHT spectral level is
considerably higher than the Fourier-based spectra in the
lower frequency region. In the higher frequency portion, the
HHT spectrum shows a steeper dropoff than the Fourier-
based spectra.. These differences in the wave spectral
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properties affect many engineering applications such as the
frequency response of marine structures. Based on
the interpretation of nonlinearity as frequency modulation,
the mean frequency of ocean wave spectrum is about 1.2

times lower than that given by Fourier analysis. A summary
is given in Section 4.

2. The Huang-Hilbert spectral analysis

Hilbert transformation was introduced to water wave
analysis in the 80s [4-6]. A main application of the Hilbert
analysis is to derive local wavenumber in a spatial series or
instantaneous frequency in a time series. To use the Hilbert
transformation, proper preprocessing of the signals is very
critical. Large errors in the computed local frequency or
wavenumber can occur when small wavelets are riding on
longer waves. A quantitative illustration of the riding wave
problem has been discussed in great details by Huang et al.
[1] and will not be repeated here. The common approach in
the past to alleviate this problem is to apply low pass filter to
the signal prior to Hilbert transformation. The determination
of the low pass frequency is somewhat subjective, and
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the signals removed may contain the information of
nonlinearity, which are frequently the features to be studied.
Furthermore, simple low-pass operation may not eliminate
the riding wave problem.

The key ingredient in the HHT is empirical mode
decomposition (EMD) designed to reposition the riding
waves at the mean water level. Extensive discussions on the
EMD have been given by Huang et al. [1,2). The main idea is
to find the trend that can represent the mean local average so
that riding waves can be identified. The EMD method uses the
point-by-point average of the signal envelopes for the local
mean. The difference between the original signal and the local
mean represents a mode of the signal. The local mean may
also contain riding waves, and the mode decomposition
process continues until no riding waves exist in the local mean
signal. The process is called ‘sifting’ by Huangetal. [1]. From
experience, even for very complicated random signals, a time
series can usually be decomposed into a relatively small
number of modes, M < log, N. Each mode is free of riding
waves, thus the Hilbert transformation yields accurate local
frequency of the mode. The spectrum of the original signal
can be obtained by the sum of the Hilbert spectra of all modes.
Extensive tests have been carried out by Huang et al. [1,2].
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Fig. 1. (a) Simple sinusoidal oscillations with the frequency (f) or wavenumber (k) of the first half double that of the second half, (b) the computed HHT
spectrum, (c) the computed wavelet spectrum, and (d) a comparison of the spatially or temporally averaged spectra computed by FFT, wavelet and HHT

methods. The frequency (wavenumber) is normalized by the Nyquist value.




P.A. Hwang et al./ Applied Ocean Research 25 (2003) 187-193 189

Here we present three cases to illustrate the superior
resolutions of the HHT spectrum.

Case 1is an example of an ideal time (¢) or space (x) series
of sinusoidal oscillations of constant amplitude, the fre-
quency (f) or wavenumber (k) of the first half of the signal is
twice that of the second half (Fig. 1a). The spectra computed
by the HHT and wavelet techniques are displayed in Fig. 1(b)
and (c), respectively. The HHT spectrum yields very precise
frequency resolution and also high temporal resolution in
identifying the sudden change of signal frequency at about
the half point of the time series. In comparison, the wavelet
spectrum has only a mediocre temporal resolution of the
frequency change. There is also a serious leakage problem
and the spectral energy of the simple oscillations spreads
over a broad frequency range. Unless specified otherwise, the
spectral contours plotted in the figures presented in this
article are 3 dB (0.3 in logarithmic scale, approximately a
factor of two) apart and covers a 30-dB range. For the
example given in Fig. 1c, the 3 dB contour near the spectral
peak extends between 0.8 and 1.2 times of the spectral peak
frequency for the wavelet spectrum. In contrast, the HHT
spectral energy is pretty much contained at the two spectral
peak frequencies, the spectral density of the next frequency
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bin is at least 10 dB down, as estimated by the marginal
spectrum averaged over the whole time sequence (Fig. 1d).
The spectral peak discrimination power can be quantified by
the ratio between the spectral peaks and the neighboring
spectral valleys. For HHT, this number is 23 dB, the FFT
analysis gives 16 dB, and wavelet 8 dB. Also noticeable in
Fig. 1dis the unequal spectral densities at the two peaks of the
wavelet spectrum caused by the application of frequency-
dependent windows in the wavelet analysis. The spectral
density at the second frequency component is only about
60% of the spectra density at the first frequency component.

Case 2 is a single cycle sinusoidal oscillation occurring at
the middle of the otherwise quiescent signal stream (Fig. 2a).
The frequency of the single cycle oscillation is 1/32 cycles
per second. The precise temporal resolution of the HHT
method is clearly demonstrated by the sharp rise and fall of
the HHT spectrum coincident with the transient signal
as shown in Fig. 2b. In comparison, the wavelet spectrum is
much more smeared both in the frequency and temporal
resolutions (Fig. 2¢). The marginal spectrum derived from
the HHT analysis shows a much sharper frequency
definition of the single oscillating cycle as compared to
the wavelet and FFT spectra (Fig. 2d).
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Fig. 2. Same as Fig. 1 but for a transient sinusoidal wave of one cycle.




190 P.A. Hwang et al. / Applied Ocean Research 25 (2003) 187-193

L1=50.3, A1=1.00, epsilon=0.2,
1 T T T

@
> OF -
-1t 1 1 \ 1 =
950 1000 1050 1100
3dB contours
03 i i | (b)
0.2} -
'ﬁ e - —— - -
] e of . . % ..., .. ... CY o %, o .
0.1 | ... ,I ... ’. ...’. .'." a
0 1 | I 1
950 1000 1050 1100
03 : N
MNSAVSAVGAE
e N N N ]
S
T
0.1 %
0 1 | 1 1
950 1000 1050 1100
xJt

Spectral Density

hhaTestanalyOfunc.m
Frequency modutation
fachht:1.00, facwav:1.00 facfft:1.00,factH:1.24, factW:1.27
? T oo To(d
10 = l ,l R E()
r [} -=- Wavelet
10 L -
0 Er
10 RRERIEIEIEP IR PP i :...':,:,“‘....l ............... =
» S YO | 3
- ' |I* ‘ ] -
" ety ]
i by ]
- TR i
1 [ | (I }
]0 ?',13 ..... 70 EETERRTTRRE _:4
= L =
o o " 4
r I l: i ]
B (I [ 7
- ' L ||\. _
L it
102 o T R I |
- T ot 3
E Pl "oy ]
- 1 n: oy ]
- Pl L —
| : Tl oy B
S o
1 AN Bl L ' e
107 10 10°
K

Fig. 3. Same as Fig. 1 but for a signal with modulated frequency, y(r) = a cos(er + & sin wf). The unmodulated mean frequency is shown by dotted lines in (b)

and (c) for reference.

Case 3 is a sinusoidal function, y, with its oscillating
frequencies subject to periodic modulation (Fig. 3a)

¥(?) = a cos(wt + € sin wr), )

where a is the amplitude, w is the angular frequency and ¢ is
a small perturbation parameter. This is the exact solution for
the nonlinear differential equation [1].

d2y+( 20— (1 = 2% si =0 2
P o+ ewcos wt)’y — ( ) Yew sinwt=0. (2)
If the perturbation method is used to solve Eq. (2), the
solution to the first order of ¢ is

1
Y1) = cos of — & sin® ot = cos wr — e[ 5(1 - cos 2wt)].

3

The HHT spectrum (Fig. 3b) correctly reveals the nature of
oscillatory frequencies of the exact solution Eq. (1). In
contrast, the wavelet spectrum (Fig. 3c) shows a dominant
component at the base frequency and periodic oscillations of
the second harmonic component. In the marginal spectrum
(Fig. 3d), the HHT analysis shows that the spectral energy is
confined in the narrow frequency band surrounding the
base frequency, which reflects the nature of frequency

modulation of the nonlinear system Eq. (2). Both FFT and
wavelet analysis spread the spectral energy into higher
frequencies as a result of harmonic generation by Fourier
decomposition of a nonlinear signal. The Fourier decompo-
sition turns out to be a perfect match for representing the
perturbation solutions such as Eq. (3). In this example, we
have chosen & = 1/5, so the spectral density of the second
harmonic is 1/100 of the primary component, which is
accurately reproduced by the FFT spectrum. The wavelet
spectrum under-predicts the magnitude of the second
harmonic by about 40%, similar to the results in Case 1
(Fig. 1d).

The three examples shown above illustrate the excellent
temporal (spatial) and frequency (wavenumber) resolution
of the HHT method for processing nonlinear and nonsta-
tionary signals. Many more demonstration cases are
presented by Huang et al. [34].

3. Spectrum of wind generated waves
Here we investigate the impact on the wind wave spectral

functions using different spectral analysis techniques
described in Section 2. The wave record is acquired by

K
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Fig. 4. Examples of the time series of wind-generated waves used for spectral comparison, the average wind speed is about 5 m s, The data are measured by a

fast response wire gauge sampled at 50 Hz.

a fast-response wire gauge [7] during a test deployment in a
canal (approximately 100 m wide and 1000 m long).
The data are sampled at 50 Hz, the wind condition is light
and variable with a range between 0 to Sms™". Fig. 4
displays examples of the wave record showing the typical
quasi-random time series of wind waves rich with group
structure. Visual inspection suggests that the peak wave
period is somewhat longer than 0.6s and one expects
considerable lower frequency energy associated with the
wave groups. The number of carrier waves in a group ranges
mostly between 3 and 10.

Wave spectra are calculated by the three methods using 20
segments of the wave record, each segment contains 640 data
points (12.8 s). For the Fourier spectrum, the mean of the 20
raw spectra is further running-averaged across nine
frequency bins, resulting in the final spectrum with 360
degrees of freedom. For the HHT and wavelet spectra, each
data segment produces a temporal variation of the wave
spectrum. The average over time gives the marginal
(1D) spectrum. The procedure is repeated for the 20 segments
to obtain the final average HHT and wavelet frequency
spectra. Fig. 5 compares the spectra derived from these three
different processing procedures. The similarities and differ-
ences of the spectral properties are described below.

The peak frequencies of the three spectra are close to
1.9 Hz for average wind speed U=2ms ' (Fig. 5a)

and 1.4HzatU =5ms™" (Fig. 5b). A secondary peak near
the frequency component with minimum phase speed,
fm = 13.6 Hz, is very prominent in the Fourier spectrum.
The secondary peak is still discernable in the wavelet
spectrum, but it is buried in the noise of the HHT spectrum.

Overall, the wavelet spectrum represents a smoothed
version of the Fourier spectrum. The two Fourier-based
spectra produce essentially similar results. Differences
between the two spectra can be attributed to the degree of
freedom, which is considerably higher in the wavelet
analysis through the multiple windowing procedure.

The HHT spectrum differs from the other two Fourier-
based spectra in two main areas. The spectral density at the
low frequency portion is considerably higher in the HHT
spectra, but near the peak and at higher frequencies the
reverse is true. As we have emphasized in Section 2, this
result is expected because the different interpretations of
wave nonlinearity between HHT and Fourier-based
methods. Fourier-based techniques always decompose a
nonlinear wave into its base frequency and higher
harmonics, therefore some spectral energy in the higher
frequencies are leaked from their lower frequency sub-
harmonics. There are higher order spectral processing
methods (bispectrum, trispectrum,...) designed to restore
those nonlinearity-contributed high-frequency spectral
energy to the base frequency. It is fair to say that
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Fig. 5. Spectra of wind-generated waves. The average wind speed is (8) 2ms™ ' and () 5ms™".

Fourier-based methods always overestimate the spectral
level at frequencies higher than the spectral peak. The HHT
interprets wave nonlinearity in terms of frequency
modulation and the spectral energy of a nonlinear wave
remains at the neighborhood of the base frequency (see also
Fig. 3d).

Fig. 6a shows the ratio of the spectral densities, Sg/Sy
and S,,/Sy, where subscripts F, H, and w are for FFT, HHT,
and wavelet, respectively. Using the HHT spectrum as
reference, the spectral density derived from Fourier-based
analysis is in general much lower (by a factor of about 80 at
its minimal point) at low frequencies and much higher (by
about a factor of 10) at high frequencies. We also processed
the spectral difference normalized by the peak spectral
density, (Sg — Sy)/Sy(f,) and (S,, — Su)/Su(fp). The results
are shown in Fig. 6b. Significant differences in the spectral
properties are obvious in the frequency region lower than
the second harmonic of the peak frequency. These
differences in the frequency distribution of wave energy
certainly have impacts on ocean engineering designs. For
example, the mean frequency as defined by the normalized
first moment of wave spectrum, f; = [ fS(f) df/ [ S(f)df, is
13% lower in the HHT spectrum than that of the Fourier
spectrum, and 21% lower than that of the wavelet spectrum
for the examples shown in Fig. 5. These results suggest that

the design wave spectrum presently used in engineering
applications may underestimate the low frequency impact of
wave motion.

4. Summary

Analyzing nonlinear and nonstationary signals remains a
very challenging task. Presently, most methods developed
to deal with nonstationarity are based on the concept of
Fourier decomposition; therefore all the shortcomings
associated with Fourier transformation are inherent in
those methods also. The recent introduction of EMD by
Huang et al. [1,2] represents a fundamentally different
approach for decomposing nonlinear and nonstationary
signals. The associated spectral analysis (HHT) provides
superior spatial (temporal) and wavenumber (frequency)
resolution for handling nonstationarity and nonlinearity
(Section 2). The HHT spectrum also results in a consider-
ably different interpretation of nonlinearity (frequency
modulation). Applying the technique to the problems of
wind generated ocean waves, we found that the spectral
function derived from HHT is markedly different from those
obtained by the Fourier-based techniques. The difference
in the resulting spectral functions is attributed to
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Fig. 6. (a) The ratios of wavelet and Fourier spectra normalized by the HHT spectrum. (b) The difference spectra normalized by the HHT peak spectral density.

The average wind speed is 5 m s~ 1. Similar results are found for 2ms™!
the interpretation of nonlinearity. The Fourier techniques
decompose a nonlinear signal into sinusoidal harmonics;
therefore some of the spectral energy at the base frequency
is distributed to the higher frequency components. The HHT
interprets nonlinearity in terms of frequency modulation and
the spectral energy remains in the neighborhood of the base
frequency. This results in a considerably higher spectral
energy at lower frequencies and sharper dropoff at higher
frequencies in the HHT spectrum in comparison with the
Fourier-based spectra. The mean frequency computed from
HHT spectrum is 13-21% lower than those derived from
Fourier-based spectra. These results suggest that the design
wave spectrum presently in use may underestimate the low
frequency impact of wave motion, and that the
mean frequency of random wave motion is lower than
that estimated by a standard design wave spectrum by
about 20%.
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